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An asymptotic theory of marginal thermal convection in rotating systems is 
constructed for the limit of rapid rotation. Many self-gravitating astronomical 
bodies, including the major planets, the Sun, and the Earth’s liquid core, correspond 
to this limit. In the laboratory, an analogous system can be constructed with a very 
rapidly rotating apparatus, in which the centrifugal force plays the role of self- 
gravitation. The formulation is offered in such a way that both these geophysical 
systems and laboratory analogues are included as special cases. When the inclination 
of the outer boundaries relative to the equatarial plane is considered weak, the two 
types of system are identical at  leading order. In this limit, the asymptotic analysis 
is profoundly simplified, because the system satisfies the Taylor-Proudman theorem 
to leading order. Nevertheless the system contains a very peculiar property: the 
mode defined by a conventional WKBJ theory implicitly assuming a locality of 
convection in the radial direction perpendicular to the axis of rotation cannot be 
accepted as a correct marginal mode, because a modulation equation gives an 
exponential growth in the radial direction, which contradicts an implicit initial 
assumption. The erroneous behaviour is traced to a spatial dispersion of thermal 
Rossby waves, which governs the marginal mode. The difficulty is resolved by 
extending the analysis to a complex plane of the radial coordinate of the point where 
convection amplitude attains its maximum. Such a complex radial distance is defined 
as the point where the wave dispersion disappears locally. The projection of the 
solution onto the real axis results in an inclination of the Taylor columns with respect 
to the radial direction. This is in good agreement with the most recent numerical 
studies. The isolation of convective Taylor columns in the radial direction weakens 
and the spiralling gets stronger as the Prandtl number decreases, as a result of the 
need to displace the critical radial distance further from the real axis. 

1. Introduction 
Knowledge of the general behaviour of thermal convection in rapidly rotating 

systems is crucial to understand various geophysical and astrophysical flows ; the 
fluid motions inside the major planets, the Sun, and the Earth’s core are examples. 
The spherical configuration and self-gravitation are the common features for these 
systems. A standard formulation of the problem has been given by Chandrasekahr 
(1961), and an asymptotic linear analysis for the limit of rapid rotation has been 
developed by Roberts (1968) and Busse (1970). A schematic view of marginal 
convection inferred from these asymptotic analyses is given in figure 1 of Busse 
(1970) : convection is expected to take the form of an ensemble of Taylor columns 

t Current affiliation: NCAR, PO Box 3000, Boulder, Colorado 80307-3000, USA. 
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aligned along a cylindrical surface coaxial to the axis of rotation. However, the 
actual radial dependence of the marginal mode is not included in their analysis. An 
attempt to define the radial dependence of marginal convection in this asymptotic 
limit is made by Soward (1977). It turns out that within the framework of the 
previous asymptotic treatment it is not possible to define the radial structure of 
convection in a consistent manner. The result implies that Roberts’ and Busse’s 
analysis does not offer a correct critical Rayleigh number of the system at leading 
order. The problem has been left untouched since then. The purpose of this paper is 
to offer a correct critical Rayleigh number of the spherical self-gravitating system, 
by resolving this difficulty, and hence define the radial structure of the critical mode 
in a consistent manner. 

The problem is worth revisiting at  this time, particularly in the light of the recent 
numerical results by Zhang & Busse (1987) and Zhang (1992). They imply that the 
morphology of marginal convection at very high rotation rates are qualitatively 
different from the sketch given by figure 1 in Busse (1970). Two distinctive modes are 
identified by them : the spiralling and the wall-attached modes. In  the spiralling 
mode, the Taylor columns seem not so strongly constrained to a thin cylindrical shell 
as expected from the previous asymptotic theory. On the other hand, in the wall- 
attached mode, the Taylor columns tend to attach to the equatorial boundary, 
against the expectation from the asymptotic theory that they will reside a t  an 
intermediate distance from the axis of rotation. A revised asymptotic theory is 
required to explain all these discrepancies from the previous theory. 

The significance of this problem in a general context of instability theories is 
equally noted. The difficulty in defining a precise critical Rayleigh number pointed 
out by Soward is not peculiar to this particular instability problem. Soward & Jones 
(1983) have encountered and solved a similar difficulty in a spherical Taylor 
instability problem. A common difficulty can be traced to the interrelations of the 
global/local temporal/spatial instabilities. Even though much progress has been 
made for open systems in recent years (e.g. Huerre & Monkewitz 1990), a general 
analysis for closed systems like the present one is still awaited. 

For this reason, an effort is made to keep some generality of the problem in the 
present study. In this respect, it is worth noting that laboratory analogues of these 
geophysical systems have been constructed by Busse & Carrigan (1976), Carrigan & 
Busse (1983). The centrifugal force acting outward from the axis of rotation plays the 
role of the gravity in these analogues. The correspondence between the geophysical 
self-gravitating systems and the laboratory systems driven by centrifugal force is 
first mentioned by Busse (1970). Though the geophysical spherical systems and the 
laboratory analogue systems are not completely identical, with a simple rescaling of 
the systems it is believed that the latter provide a good representation of the actual 
geophysical systems. 

In the present paper, a systematic approach unifies these two types of the systems 
by combining the previous works on both the geophysical systems (e.g. Roberts 
1968; Soward 1977; Busse 1983) and the laboratory analogues (e.g. Busse & Hood 
1982 ; Busse 1986). In the next section, the formulation is constructed in such a way 
that in particular parameter settings both the self-gravitating geophysical systems 
and the centrifugal-force-driven laboratory systems are recovered. Any intermediate 
systems can be described in the basic formulation presented in the next section, as 
long as the symmetry of the outer boundary in respect to the equatorial plane is 
preserved. A side product of this generality is that we can observe the general nature 
of the temporal/spatial instabilities in this type of system. 
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Further, the self-gravitating geophysical systems and their laboratory analogues 
become asymptotically identical in a limit of weak inclination of the outer 
boundaries relative to the equatorial plane. In this way a close relationship between 
two systems is established in a formal manner. Moreover, it is shown that, in this 
limit, the system can be integrated along the direction of the axis of rotation. Hence, 
the problem is much simplified in this limit. Because of this simplification, the 
difficulty pointed out by Soward can be more easily isolated from other factors. It is 
also shown that the difficulty is inherent to this type of the system, as long as the 
outer boundaries contain a non-vanishing curvature. The approximation of weak 
boundary inclinations is introduced in $3, and the analysis is restricted to this limit 
thereafter. On the other hand, in presenting the numerical results, we focus attention 
on the case with spherical geometry. 

The limit of a weakly inclined boundary is obviously not rigorously justified for the 
spherical system. We accept this approximation as an essential procedure to simplify 
the problem to a tractable level. It has been demonstrated by Busse (1970) that this 
approximation gives results which are in good quantitative agreement with those of 
a full spherical problem in terms of the previous asymptotic theory. The anticipation 
is that even in the present revised asymptotic analysis this approximation will be still 
valid. The comparison of the results with the numerical results for the full spherical 
system offered in $7 will partly justify the present approximation. Further, a higher- 
order analysis in Appendix A of the effects of the inclination of the outer boundaries 
implies asymptotic validity of the approximation. It should be also emphasized that 
the physical understanding of the marginal modes is improved remarkably by this 
revision, as elaborated in $8, by resolving the inconsistency of the previous analysis, 
even though the present results may be valid only in qualitative terms. 

The remaining part of this paper is organized as follows. The previous asymptotic 
analysis by Busse (1970) is reviewed in $4, and the difficulty pointed out by Soward 
(1977) is explained in $5.  An alternative approach to resolve the difficulty is 
developed in $6, which constitutes a main contribution of the present paper. A 
special mode which appears in the limit of small Prandtl number is considered in 
Appendix C. 

2. Formulation 
In the present work, we adopt the cylindrical coordinate system (s,~),  z ) ,  where s 

represents the distance from the axis of rotation, which is in the z-direction. We 
adopt the Boussinesq approximation with the coefficient of thermal expansion a to 
explore the behaviour of thermal convection in a fluid with kinematic viscosity v and 
thermal diffusivity K .  The fluid is rotating with angular velocity Q about the z-axis. 

As a basic state, we assume a gravity field 

(2.1 a) 

whose magnitude is measured by a constant g, and a basic temperature distribution 

,g = ,g 0 2  -1prt.rt (2.lb) 
- 

defined in terms of a constant 8, where the vector rt is defined by 

rt = sf+hzz^, (2.lc) 

and h is a free parameter of the problem ; ro represents the radius of an astronomical 
body, or a representative size of the laboratory apparatus. With h = 1, the system 
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reduces to a self-gravitating astronomical body, which contains a homogeneous heat 
source distribution, and with h = 0 the system principally? reduces to  the laboratory 
system, in which the gravitational force is mimicked by the centrifugal force. By 
varying this free parameter, we can easily consider any intermediate situations 
(though not physically constructable). 

After non-dimensionalizing the system by adopting Qr, as the scale of the velocity 
v, fir: for the perturbation temperature 0, ro as the spatial scale, and Q-' as the time 
scale, we obtain the non-dimensional perturbation equations 

(slat -EV)  v + 2 i  x v = - VT + R W ,  ( 2 . 2 ~ )  

v - v  = 0, ( a / a t - ( E / P ) V 2 ) e - v . r t  = 0, (2.2 b,  c )  

where R = ug,8r,/Q2, E = v/Qr:,  P = v/K (2.3 a-c) 

are the Rayleigh number, the Ekman number, and the Prandtl number, respectively; 
i is the unit vector in the z-direction. 

By introducing the scalar variables $ and q5, any velocity field satisfying the 
continuity equation (2.2 b )  is represented by 

v = V x R$+V x V x iq5. 
By operation with f .  W x and $.V x V x on ( 2 . 2 a ) ,  we obtain 

( i - E V 2 ) A 2 $ - 2 G A z q 5 - R -  a ae = 0, 

% 

where Az V 2  - 

Equation ( 2 . 2 ~ )  is rewritten as 

(2 .4)  

( 2 . 5 ~ )  

(2 .5b)  

( 2 . 5 ~ )  

Equations (2 .5a-c)  constitute the basic set of equations in the following analysis. 

vanishes, i.e. 
As the boundary condition, we assume that the normal component of the velocity 

(2.6,)  

a t  the boundary z = f qb(s). In  particular, when we assume a spherical configuration 

(2 .6b)  
of the system, vb(s) is given by 

We have introduced u as a possible formal perturbation parameter, where in the final 
result we have to set u = 1. The perturbation approach is justified when the 
inclination of the boundary is small enough (i.e. Idqb/dsl 4 1). 

We restrict our attention to the limit of small Ekman number (i.e. the very rapidly 
rotating limit) throughout the analysis. Since the equation reduces to  the second- 
order differential equation in this limit in the z-direction, we do not need to  consider 

t Note that a slightly different basic temperature field is assumed for the laboratory systems. 
Nevertheless, the final form of the equations obtained below (see (3.1 c) and (3.2)) is identical to that 
obtained for the rotating cylindrical annulus by Busse (1986). 

Tb(S) = (1 - 82);. 
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any boundary conditions other than the higher-order corrections due to the 
boundary layers. The latter effects will be systematically neglected in the analysis, 
because of its smallness compared to the terms of concern. 

The basic strategy of the present study is that, in order to obtain the maximum 
insight into the system, we retain the generality as much as possible. For this reason, 
besides the Ekman number E, both the Prandtl number P and u are dealt with as 
possible small parameters. From a simple scaling analysis, it is found that the 
analysis is simplified by the rescalings 

4 s 2 a P ~  A &m 2aw 
( l + P ) 2 ’  8 h(1 +P)’ 

g =  m = -  , w =  A2 = A2A*, ( 2 . 7 ~ 4 )  

and e = (E( 1 +P)/2P) i ,  (2.7e) 

and h and h represent the non-rescaled azimuthal wavenumber and frequency, 
respectively. Accordingly, we rescale the dependent variables in terms of E, P, u by 

A2 = - uW(s, z )  exp (i&t + i+), ( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

Consequently, (2.5a-c) are reduced to 

ia2mP a2 A*v, 
( 2 . 9 ~ )  

aw 
ax 2 ax2 

(w + im3PA*) A*V + (1 +P) -- im PRQ = - -- 

-- a A* V + (w + im3PA*)A* W + !?! PRhZ A*Q 
u2 ax U 

= - 

e2m a2 &s2 a2  

us ax2 m asax 
(iw-m3A*)Q-m(V+ahzW) = T - Q -  -s-A*-lW, (2 .9~)  

with the boundary condition 

(2.10) 
uk2dqb a2 

Wf -- Vf--- A*-lW = 0 at z = fqb(s). (a2) m ds asax 

The rescalings are a modified version of those found in Soward (1977) and Busse 
(1983), based on the result of Busse (1970). Asymptotics in the limit of large Prandtl 
number are taken into account in this version. Also the asymptotics with the small 
factor u of the inclination are explicitly represented, so that the gaps between 
the asymptotic theories for the self-gravitating systems by Roberts (1968) and the 
laboratory annulus by Busse (1986) are filled. Consequently, the new parameters R, 
m, w ,  the operator A*, and the variables W, V ,  8 are expected to be scaled to the order 
of unity in terms of e,  P, and u, as long as previously estimated asymptotics (Roberts 
1968; Busse 1970) are correct. Note that the parameter e mainly measures the 
magnitude of Ekman number E in the following. 
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The terms of higher order than O ( 2 )  will be neglected in the following analysis. We 
also restrict our attention to the case where CT is taken as a perturbation parameter, 
because it is the simplest case of the problem, and still contains the basic features of 
the problem encountered in the general case. Consequently, a formal ordering 
assumed in the present paper is 1 % CT % e. 

3. The limit of small inclination of the boundary 
The mathematical treatment of the problem is much simplified in the limit of a 

small inclination (i.e. ldqb/ds( 4 1). This limit is formally dealt with by taking the 
parameter CT as a perturbation. Because of the Taylor-Proudman constraint the 
velocity component in the direction of this axis of rotation can be neglected a t  the 
leading order. By assuming this limit, we will return to the spherical geometry (2.66) 
to obtain the final results in the following. Though the limit of a small inclination of 
the boundary (a 4 1) is not rigorously justified for the spherical geometry, 
qualitatively good results are anticipated in this limit, as the previous analysis by 
Busse (1970) suggests. A justification of this approximation will be obtained by 
comparing the final results with the numerical results (Q 7). 

At leading order in a, (2.9) reduce to 

(w + im3PA*) A*V+ (1 + P )  3/32 W - imPR0 = 0, ( 3 . 1 ~ )  

(3/3z)  A*V = 0, 

(w+im3A*)8+imV = 0. 

( 3 . l b )  

( 3 . 1 ~ )  

Equation (3.16) is a statement of the Taylor-Proudman theorem that the radial 
component V of velocity is independent of z. Equation ( 3 . 1 ~ )  further implies that 8 
is also independent of z. Note that the free parameter h does not enter into this 
leading-order system. This means that the gravity force parallel to the direction of 
the axis of rotation does not enter the dynamics at the leading order, and hence, the 
equivalence between the cylindrical laboratory system and the self-gravitating 
spherical system is guaranteed within this approximation. The first-order finite effect 
of CT is considered in Appendix A. 

By integrating ( 3 . 1 ~ )  in the z-direction from -rb to qb, we obtain 

21;lb(u+im3PA*)A*V+(l+P) W I ~ ~ - l b - 2 i m P R ~ b 0  = 0. 

Using the boundary condition (2.10) on the second term, we obtain the final 
expression 

[(w+im3PA*)A*+(1+P)r*] V-imPR0 = 0, (3.2) 

where q* (l/sqb)dyb/ds (3 .3)  

measures a strength of the inclination of the top and bottom boundaries z = f qb(s),  
and can also be considered as a generalized topographic beta effect (e.g. Pedlosky 
1987; see also Ingersoll & Pollard 1982) of the system. Equations ( 3 . 1 ~ )  and (3 .2 )  
constitute a complete problem, along with the appropriate boundary conditions in 
the s-direction. Note the similarity (3 .2)  to the quasi-geostrophic equivalent 
barotropic system, apart from the last term due to the buoyancy force. 

The problem is stated, in more formal terms, as 

L,, V +  L,, 8 = 0, L,, V+ L,, 8 = 0, (3.4a, 6 )  
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L,, = [ (w + im3PA*) A* + (1 + P) q*], (3.5u) 

L,, = -imPR, L,, = im, L,, = w+im3A*. (3.5b-d) 

By setting V=L,,@, Q=-L,,@, (3.6) 

where 

the problem is reduced to 
9 ( m ,  A*, w ,  R, q*) @ = 0, (3.7) 

where 9 ( m ,  A*, w ,  R, q*) = g ( m ,  A*, w ,  q*) -m2PR, ( 3 . 8 ~ )  

and g ( m ,  A*, w ,  r*) = [ (w  + imaPA*) A* + (1 + P) q*] (w + im3A*). (3.8b) 

Note that the operator 9 has been defined as the determinant of the operator matrix 
L: 

in the current cylindrical problem. The corresponding operator 9 in the full 
spherical problem (with a N O(1)) can also be defined in an analogous way: the 
determinant of the operator matrix L, but in this case defined in terms of a 
solvability condition for the dependence, instead of a simple matrix determinant. For 
this reason, it is understood that the cylindrical problem and the full spherical 
problem have basically the same mathematical structure, and the former acts as a 
simplified version of the latter, containing essentially the same feature of the 
problem. The analysis on the finite effect of cr in Appendix A implies that the leading- 
order problem in the a-expansion is equivalent to taking the leading component of 
Taylor expansions in the x-direction of the full problem. In the full spherical,problem, 
an equivalent process is performed to obtain (3.2) from (3 .1~)  by the z-integration of 
( 3 . 1 ~ )  multiplied by the eigenmode of V in the z-direction. 

9 = L,,L,,-L,,L,, 

4. Leading-order analysis : conventional approach 
The leading-order problem of the system (3 .1~)  and (3.2) has been considered by 

Busse (1970), as a laboratory analogue of the full spherical problem. However, we 
encounter a difficulty even with this version of the problem, as in the case of the full 
spherical problem, which has been pointed out by Soward (1977). It will be 
considered in the next section and a solution to the difficulty will be addressed in $6. 
We first review the analysis of Busse (1970) in this section. 

We assume a WKBJ-type plane wave solution 

A*=- a 2 -  = - (l/s; + k2/m2) 

localized at s = so, where k is the radial wavenumber, normalized in the same manner 
as the azimuthal wavenumber m. The anticipation is that we will obtain a localized 
wave envelope as a modulation of the leading order WKBJ solution at a higher order. 
By replacing all the s-dependent variables by the values at s = so, (3.7) reduces to an 
algebraic equation 

R(m, -a2, w ,  72) = ( l/m2P) g ( m ,  - a,, w ,  q;) ,  (4.1 a) 

where 

The assumption of a real Rayleigh number R defines the frequency by 

7: = q*(s = so). 

w = qz/a2. 
The variation of (4.1 a) gives 

(4.1 b )  

6R/R, = (RJR,) 6m + (RJR,) 6k + (RJRJ &so + Sw. 
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Here the partial differentiations are done by keeping all the other quantities, m, k ,  
so, and w ,  fixed. Note that a is considered as a dependent variable of both k and so, 
and q$ is a dependent variable of so. The variation is made under the constraint of 
real Rayleigh number, which is accomplished by substituting the dispersion relation 
(4.lb) into the variations to obtain the final result. Note that, despite this constraint, 
the differentiations to define the variations are done by pretending that, nevertheless, 
w is an independent variable. At  the critical point, the variation SR vanishes for any 
arbitrary infinitesimal real variations of wavenumbers m, k and the position so by 
appropriately variating the frequency w along the real axis in accordance with the 
dispersion relation (4.1 b ) .  This requiremently is equivalent stated by 

Im [R,/R,] = 0, Im [RJR,] = 0, Im [R,o/R,] = 0, (4.2u-c) 

where 
2 - i a ~  R =--y+-- 1 a 9  R, = -- 

m2P aw ’ m3P m2Pam’ 
(4.3u, b )  

(4.3c) 

(4.3d) 

After some manipulations, the conditions ( 4 . 2 ~ ~ )  lead to 

mEaa-&$2 = 0, kP(q,*2-3mEa8) = 0, q$-2s,dq$/ds0 = 0, (4.4u+) 

where the dispersion relation (4.1 b )  has been used in the final expressions. 
The condition ( 4 . 4 ~ )  gives a critical azimuthal wavenumber m, and the critical 

radial wavenumber k defined from (4.4b), consistent with (4.4u), is k = 0.  It means 
that the radial wavenumber k is much smaller than the azimuthal wavenumber m, 
and, consequently, the radial dependence of convection is to be determined a t  a 
higher order. Note that the position of convection is defined by the curvature dy*/ds, 
of the boundary, in general. When we assume the spherical geometry defined by 
(2 .6b )  or 

the position of convection is given by so = 1/45 = 0.447 ... from ( 4 . 4 ~ ) .  Accordingly, 
the other critical parameters are given by 

q* = -1.25, w = -0.25, m = 0.328 ..., R = 4.351 ... = R,. (4.6u-d) 

The analysis to a higher order in (T given in Appendix A shows that the critical 

q* = - l / ( l - s 2 ) ,  (4.5) 

Rayleigh number is corrected to 

R = ( l + ; a A ) R ,  (4.7) 

a t  O(a). Consequently, for the full spherical self-gravitating system (a = 1, A = l ) ,  a 
precise critical Rayleigh number is given by multiplying by the factor the leading- 
order value R,. A systematic discrepancy between the critical Rayleigh numbers 
evaluated analytically as in the present section and those evaluated with a numerical 
approach, represented in figure 2 of Busse (1970), is explained by this term. Note that 
the correction formula (4.7) is independent of the specific approach adopted to 
evaluate the leading-order critical values. Hence, the correction formula (4 .7 )  can 
also be applied to the result obtained by a revised version of the asymptotic theory 
in $6. 
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5. The radial dependence consistent with the conventional approach 
The analysis of the previous section implies that the radial dependence of 

convection is still small (say of order 1), but much longer than the scale of the 
azimuthal direction (i.e. 8 < a). As explained at the beginning of the previous section, 
it is expected that such a radial dependence is defined in terms of a wave modulation 
equation. (Note that, in the present case, the wave to be modulated has no 
wavenumber. Nevertheless, this does not invalidate the multiple-scale method.) For 
this purpose, we introduce the following rescaling of the radial direction : 

alas = 2-1 a p E ,  = so + g. (5.1) 

Subsequently, it is found that the Laplacian is written 

1 1 a 2  
A* = 

SO 
(5 .2)  

a x  
with 1 = s/ae. 

By substitution of (5.2) and by Taylor expanding the boundary inclination r]* around 
s = so, we obtain an equation of order d from (3.7). Equivalently, more formally, the 
equation to define the radial dependence is written, as a wave modulation equation 
(e.g. Kawahara 1973), by 

(5.4a) where 

(5 .4b)  

-=-( a 2  2w--P i i 3  )st ,+(l+P),, w 
aw SO 

(5 .44 

and w, and R, are the correction to the frequency and the critical Rayleigh number 
a t  O(2).  Note that in the final expression (5.4), the form (4.5) of the boundary has 
been assumed. The solution of (5.3) is written in terms of an Airy function as 

@(El  = Ai (p(E+Eo)), (5.5) 

Here, as pointed out by Soward (1977) for the full spherical problem, we encounter 
a difficulty. The coefficient p is complex, in general, in the present problem, while the 
Airy function Ai(5) grows exponentially as g+oo in general for a complex variable g. 
It decays exponentially only in the section Iph((S)I < in, and decays algebraically only 
along the real axis as c+-oo (e.g. Olver 1974). Consequently, the asymptotic 
solution defined in the previous section grows exponentially as E+ + oo in general. 
(Re (p) < 0 is proved for every Prandtl number, by assuming (4.5), and Im ( p )  + 0 
apart from the special cases discussed below.) Note that the zeros of the Airy function 
are distributed only along the real axis (and all negative), so that the solution cannot 
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be bounded in any sense as t --f + oc). In other words, the convection mode inferred 
a t  leading order in the previous section is not locally isolated as initially assumed. 
Hence, the critical point defined in the previous section is not consistent, and for this 
reason, cannot be a correct critical point. The implication is that the actual critical 
Rayleigh number has a finite value larger than the one defined by the analysis of the 
previous section. 

An elucidating physical interpretation of this difficulty in terms of wave dispersions 
is given by Soward (1977), as described briefly in Appendix B, More heuristically, it 
can be understood that the difficulty stems from the coexistence of temporal and 
spatial instabilities. An exponentially exploding spatial mode, represented in terms 
of an Airy function, implies that an initial small disturbance, set up near to s = so, 
grows exponentially as it propagates. However, such an exponential blow-up mode 
cannot be confined to a spherical container. Instead, by repeated reflections at the 
boundaries, it is finally dispersed by diffusivity. (Note that the perturbation is 
temporally absolutely stable apart from close to s = so.) Consequently, even in terms 
of temporal evolution, the mode supposedly defined as a marginal mode in the 
previous section cannot be persistent, as long as linear dynamics are concerned. For 
the role of nonlinearities, refer to Soward (1977). 

Note that, when the boundary inclination q*(s )  does not depend on the distance 
s, the difficulty does not arise. In this case, the second term in ( 5 . 4 ~ )  drops out, hence 
the coefficient aL?/as, is equal to aL?/a(i3/as)2 apart from a real constant factor 
aa2/as0. It is seen that the curvature of the boundary, which defines a dispersion 
relationship of the linear waves, is a crucial part of the difficulty (Appendix B). 

The other exceptional case is the limit of small Prandtl number. It is seen that, in 
this limit, the coefficient ,u tends to reality, and, hence, a consistent solution is 
available. In this respect, a separate analysis of this limit should be done. Since the 
Prandtl number measures the relative magnitude of the kinematic viscosity 
compared to the thermal diffusivity, it is inferred that the kinematic viscosity is 
responsible for an erroneous spatial instability of the system. In contrast, in the limit 
of small Prandtl number, where the viscosity plays no role in the leading order, the 
motion is described as a pure inertial oscillation (Greenspan 1968). At a higher order, 
a weak thermal perturbation is required to sustain the motion against weak 
dissipation by viscosity. A preliminary analysis for this limit is given in Appendix C. 

6. An alternative approach 
The general nature of the difficulty encountered in the previous section has been 

elucidated by Soward & Jones (1983). As stated in $4, a general condition for the 
critical point is given by the set of conditions (4.2u-c). Soward & Jones remark that, 
in a usual situation, the conditions (4.2b, c) can be replaced by 

R, = 0, RSo = 0. (6.1 a, b )  
In the present problem, though the condition (4.2b) is replaceable with (6.lu), the 
condition ( 4 . 2 ~ )  cannot be replaced by (6.lb), which causes a difficulty. If (6.lb), 
which leads to aL?/as, = 0 from (4 .34 ,  is satisfied, the term proportional to t in (5.3J 
does not appear in the problem. Instead, higher-order derivatives of the operator Y 
are considered, namely 
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with 1 = d/IY, 

and an additional constant 9 expected from a permutation of operators (a/a[ and 
(a/aE) E based on a boundary condition ; in the present problem, it is fortunate that 
a22’/[a(a/as) aso] = 0 and hence 9 = 0. 

By reducing the turning point s = so from the first order to the second order in 

@ = exp (iwlt-E2/2y)H,(5/b), (6.26) 

(6.2a), we can cast the solution into the form of a Weber function 

where 

and 

Here the corrections to the frequency w1 and Rayleigh number R, are related to the 
integer n by 

w1 = -m2PRl- 
a 9  
aw 

-- 

and H,(x )  is the nth Hermite polynomial. The sign of the coefficient y is chosen to be 
Re ( y )  > 0, which guarantees the solution (6.2b) decays exponentially away from the 
turning point s = so, so that the type of difficulty encountered in the present case 
does not appear. 

The difficulty of the present problem stems from the fact that, though the 
condition ( 4 . 2 ~ )  is satisfied at the critical point, Re [R,o/R,] remains non-zero (i.e. 
(6.1 b )  is not satisfied). Consequently, the modulation equation to define the radial 
structure reduces to the form (5.3) instead of (6.2). It is easily proved (Appendix B) 
that we encounter this kind of difficulty whenever the marginal mode contains a 
spatially dispersive wave. In the present case, Rossby wave dispersion (4.1 b )  causes 
the difficulty. (Note again that if the effect of viscosity is weak enough (i.e. P+O),  
even with the dispersion, (5.3) offers a well-behaved solution.) 

A recipe to resolve the difficulty proposed by Soward & Jones (1983) is to replace 
the condition ( 4 . 2 ~ )  by (6.lb).t For this purpose we have to extend the analysis to 
the complex so-plane with so = s, + is,. Now so is a complex distance from the axis of 
rotation, where the centre of convection is situated. On the complex so-plane, we 
seek the point where the condition (6.1 b )  is completely satisfied, along with the other 
conditions (4.2u, b) .  In practice, we proceed in the following way: 

The dispersion relation to constrain the variations is defined by the reality of the 
Rayleigh number as before. By referring to (4.la), it is equivalently stated by 

9, = 0, ( 6 . 3 ~ )  

where we have designated the real and imaginary components of the operator 
z ( m ,  -a2, w ,  7;) by 

9 = 9, + iP i .  

Equation ( 6 . 3 ~ )  is a second-order algebraic equation in terms of w .  One root, which 
is continuous to (4.1b) on the real axis, is adopted for the analysis. The other root 
becomes infinite on the real axis. By substituting the expression for w into the partial 
differentiations in (4.2u, b ) ,  we define the critical wavenumbers k and m at any given 

t An equivalent proposal has been made by Huerre & Monkewitz (1990) for open systems. The 
condition (4.2b) must be also replaced by ( 0 . 1 ~ )  in the general case. 
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FIGURE 1. The Rayleigh number satisfying the conditions (4 .2a,  b) plotted on the complex plane 
so = s,+is, for (a) P = 0.1, (b )  P = 1, ( c )  P = 10. The contours are drawn with an interval 0.5 up 
to 50 in (a), and 0.2 up to 20 in (b, c ) .  The chain-dotted curves are for 6R/6sr = 0 and SRjSs, = 0. 
No attempt to plot the Rayleigh number on a whole domain is made, because of the numerical 
difficulty in tracing the critical value as the survey moves away from the saddle point, in particular 
due to a dramatic increase of the critical azimuthal wavenumber m. 

point on the $,-plane. The critical radial wavenumber is simply given by k = 0 from 
(4.2b) or ( 6 . 1 ~ )  as before. Note that the radial wavenumber enters the operator 9 
only in the square form through the Laplacian A*. By referring to (4.3c), equation 
(4.2b) is equivalent to 

k Im [ a ~ / i 3 0 1 ~ / R , ]  = 0. 

The condition Im [a8/aa2/lR,] = 0 is not competitive with the condition ( 4 . 2 ~ )  in 
general, as in the analysis along the real axis (see (4.4)). Hence the vanishing of the 
radial wavenumber follows from the condition (4.2b). The same condition follows 
from (6.1 a) ,  too. On the other hand, the critical azimuthal wavenumber m is kept real 
in order to preserve the homogeneity of the solution in the pdirection. By choosing 
the critical m at every given point satisfying the condition (4.2a), we week the point 
so, where the condition (6 .1b)  is satisfied. 

The procedure is visualized in figure 1 (a-c), where we plot the Rayleigh number 

R = p r / m Z P  (6.3b) 
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FIGURE 2. The dependence of the saddle point so = s,+is, on the Prandtl number P :  

(a) real component s,, ( b )  imaginary component si. 

with k = 0 consistent with (4.2b), m defined by (4 .2a) ,  and the frequency w defined 
from the dispersion relation (6 .3a)  on the so-plane for P = 0.1, 1, 10, respectively. 
Since the two conditions (4 .2a,  b )  are already satisfied on the plots, it only remains 
to identify a point, where the condition (6.1 b )  is satisfied. To help to understand the 
procedure, the curves of both SR/Ss, = aR/as,+aR/aw(aw/as,) = 0 and SR/Ss, = 0 
are shown as chain-dotted curves. The critical point defined in $4 by condition ( 4 . 2 ~ )  
is identified as a point with SRISs, = 0 along the real axis (Appendix D ,  ID.1) .  It is 
seen that at this point, though a local minimum of Rayleigh number is attained along 
the real axis, it is not a local extremum in the direction of the imaginary component 
(i.e. SRISs, =I= 0). This dispersive nature of the solution causes a difficulty. 

The necessity to depart from the real axis is understood visually on the figures in 
that there is no point along the real axis where the condition (6.1 b ) ,  or equivalently 
SR/Gso = 0 (Appendix D ,  5D.2) is completely satisfied. On the other hand, on leaving 
the real axis downward on the complex plane, the local minimum of the Rayleigh 
number increases, along the curve SR/Ss, = 0, until it attains a maximum at the 
point SR/Ss, = 0, which constitutes a saddle point (Appendix D, sD.3) .  At this point, 
where the condition (6 . lb)  is satisfied, the local asymptotic solution can be cast into 
an equation of the form (6.2) so that the problem of non-localization is resolved. 

Though it may seem physically meaningless to consider a solution localized on a 
complex plane, formally it simply means that we replace the Laplacian A* in (3.7) 
by a complex eigenvalue a2 = 11s: in ( 4 . l a ) .  An equivalent analysis can also be done 
in terms of the local complex total wavenumber a, instead. Since we have kept the 
leading-order wavenumber k vanishing, the saddle point identified also constitutes a 
turning point, where the wavenumber vanishes locally. Appendix B further tells us 
that it is also a point where the wave dispersion vanishes locally along the curve 
SR/Gs, = 0. As a result, we obtain a well-behaved non-dispersive solution (6.2b) near 
to s = so. The anticipation is that such a property is preserved globally, so that we 
still obtain a localized solution along the real axis. We will examine this point below. 

Figure 2 represents the dependence of the position so of the saddle point on Prandtl 
number P .  It is seen that a greater shift of the critical point so from the real axis is 
required for a smaller Prandtl number, so that a larger discrepancy from the 
conventional asymptotic analysis is expected for this case. The Rayleigh number R 
and the frequency w at a defined critical point (the saddle point) so are represented 
by figures 3 ( a )  and 3 ( b ) ,  respectively, along with the critical azimuthal wavenumber 
m in figure 3(c). 

The radial dependence of the solution is determined from 

(&(m, A*, w ,  r*) - &(m, - l/& w ,  7;)) @ = 0, (6 .4)  
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FIQURE 3. The dependence of the critical parameters on the Prandtl number P: (a) Rayleigh 

number R, (b) frequency o, (c) azimuthal wavenumber m. 

where m, w ,  and 7: take their values at the saddle point s = so. The expression is 
equivalent to (3.7) from (4.1a). If we approximate the Laplacian A* by 

(6.4) is written 
- i p +  ( i / d 2 )  a2/a82, 

where ( 6 . 6 ~ )  

(6.6b) 

C,  = B ( m ,  - 1/82,w, q * ) -  B ( m ,  - i /s: ,w, 7;). (6.6d) 

Consequently, the local radial wavenumber i ( s )  defined by a/& = i i  is determined 
from the algebraic equation 

where 

-CCsk6+C2k4-Clk2+C0 = 0, 

k = i/&. 
(Note that a different normalization is adopted for the radial wavenumber k than 
that of $4.) It is seen that there are three pairs of roots, each having an opposite sign 
in both real and imaginary components to the other. Note that with these modified 
asymptotics the radial wavenumber is of the same order as that of the azimuthal 
component. 
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FIGURE 4. The distribution of the complex wavenumber k = k, +ik, on the complex plane s = 8, +is, 
with P = 1 : (a) the real part k,, ( b )  the imaginary part k,. The contour interval is 0.2 from - 100 to 
100. Negative areas are drawn with dashed curves, while the zero lines are designated by dotted 
curves. The saddle point so is represented by a black circle. The anti-Stokes lines are drawn from 
the saddle point by chain-dotted curves. 

Among possible pairs of roots we choose a pair + k  such that the local radial 
wavenumber vanishes at  the saddle point s = so. The distribution of one of the pairs 
of roots k ( s )  = kr(s) + ik,(s) on the complex s-plane are shown in figure 4 for the case 
with P = 1. It is seen that the imaginary component k,(s) of the root changes sign 
along the real axis. By crossing the point s = st with k,(e) = 0 along the real axis, the 
mode changes from an exponentially growing to an exponentially decaying mode, 
which allows a localized solution around this point. (Note that another pair - k ( s )  
has an opposite property which offers a non-localized solution around this point.) 

The solution is approximately expressed by 

around the turning point s = st of ki(sr). It is seen that the sign of k, should be chosen 
in such a way that it satisfies 

in order to obtain a localized solution. The marginal convection has a Gaussian 
profile peaked at s = st, with a wave structure, with a constant phase along the 
direction 

++f , (s , )  ( 8 - 8 ~  = & [ ~ ) + k , ( s ~ )  (s-st)] = const. 

around s = st. Hence, the magnitude of the eastward tilting of the vortex columns 
with increasing distance s from the axis of rotation is locally defined by 

af,(s,)/as, > o 

0 = -tan-' kr(st), (6.8) 

while the steepness of the Gaussian profile may be measured by afi/asr(st). The 
dependence of these quantities characterizing the convection columns on Prandtl 
number is shown in figure 5 (a, b ) ,  respectively, along with the position st of the 
turning point in figure 5 ( c ) .  
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Finally, a little care should be paid for a consistence for a higher-order correction 
of WKBJ approximation. Even though we have obtained a solution bounded in both 
directions of s to leading order, we also bear in mind the other solution of the pair 
described by a local wavenumber - k, which grows exponentially, departing from the 
turning point S, in contrast to the leading-order solution. Here, the main eigensolution 
is dominant and the remaining one is recessive near s = st. (Here, dominance and 
recession have roughly their literal meaning, but see Olver 1974 for a more exact 
definition.) In general we require two independent numerically satisfactory solutions 
(Olver 1974, Ch. 5;  Miller 1950), each dominant in a different range of the domain of 
concern (in this case [0, l]), respectively, to satisfy the boundary conditions. At a 
higher order the eigensolution, which has been chosen at  a leading order, is not 
sufficient to satisfy the boundary conditions of the problem at s = 0 , l  satisfactorily. 
For this purpose, we have to add the other eigensolution of the pair as a higher-order 
correction. A necessary condition to construct a satisfactory solution at  a higher 
order by the combination of two eigensolutions is that the remaining eigensolution 
is dominant a t  near the boundaries s = 0, 1 ,  so that it can offer an appropriate 
correction to the leading-order solution, which is recessive in turn near the 
boundaries, to satisfy the boundary conditions a t  a higher order.? 

For a pair of WKBJ solutions, the dominance of the eigensolutions changes from 
one pair to the other over the anti-Stokes lines (e.g. Olver 1974) defined by 

Im [ lokds ]  = 0. 

The anti-Stokes lines are drawn as chain-dotted curves in figure 4 (a, b) .  Let us define 
the two points where the anti-Stokes lines cross the real axis as s1 and s2(s1 < sz). In 
the range (sl, s2), the primary solution locally described by (6.7) is dominant, while 
outside the range (sl, s2) the remaining one of the pair is dominant. Consequently, the 
anti-Stokes lines should cross the real axis within the range of the interest (i.e. 
0 < s1 < s, < l ) ,  in order that the system contains two independent numerically 
satisfactory solutions. 

To check the consistency of the WKBJ analysis, the cross points s1 and s2 of the 
anti-Stokes lines are plotted as dashed curves on figure 5(c). It is seen that the larger 
crossing point s2 asymptotes to 1 as the Prandtl number decreases. It touches the 
outer boundary (s, = 1) at P x 0.1, so that the WKBJ approach adopted is not 
completely justified for a smaller Prandtl number. Because of a large displacement 
of the saddle point so, a locality of the solution satisfied close to s = so is no longer 
effectively satisfied along the real axis. Also, a strong twisting of the turning point 
s, on the real axis toward the outer boundary s = 1 demands a larger correction than 
a higher-order approximation may afford in this limit. 

7. Comparison with the numerical results 
In this section, the results obtained in the previous section are compared with the 

numerical results obtained by Zhang (1992) and W. Hirsching (private com- 
munication) (see also Hirsching & Yano 1992). Note that Hirsching is using 

t If the second eigensolution still remains recessive near the boundaries, a correction to satisfy 
appropriately the boundary conditions does not remain a small quantity. It follows that the 
,eigensolution chosen as a leading-order solution contains an error of order unity, as do the critical 
parameters defined along with it. Consequently, the exchange of the dominance of the 
eigensolutions is crucial for the consistency of the present WKBJ approach. 
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R/R,  = 
P = 0.1 

R / R ,  = 
P = l  

R / R ,  = 
P =  10 ‘rn/m, = 1 O/Ob = 

Numerical results Asymptotics 

4.2 
1.6 
0.60 

1.35 
1.23 
1.28 

1.18 
1.47 
1.51 

3.58 
0.96 
0.76 

1.24 
0.99 
1.09 

1.29 
1.15 
1.80 

TABLE 1.  Comparison of the critical parameters. The numerical values are according to Zhang 
(1992). All the critical values are given relative to the standard values given by (4.6), originally 
derived by Busse (1970), apart from a correction of order CT given by (4.7). 

basically the same code as Zhang. The comparison proceeds from the values of 
critical parameters (table 1) to the structure of the marginal modes. 

It is seen in figure 3(a)  that the correct critical Rayleigh number increases 
dramatically for a smaller Prandtl number. It asymptotes to R+1.26133/P as 
P + 0. The critical Rayleigh number attains its minimum value a t  P - 1, and slightly 
increases as P increases, The fist row of table 1 shows a comparison of the critical 
Rayleigh number for the case P = 0.1 with Zhang’s (1992) numerical results (taken 
from figure 1 and table 2 of Zhang 1992) : the leading factors agree. A tendency of the 
slight departure from Busse’s (1970) previous asymptotics (after the correction of 
(4.7)) for larger Prandtl numbers (P = 1’10) is also in accordance with Zhang’s 
numerical results. The magnitude of frequency shown in figure 3(b) is smaller for 
smaller Prandtl number, in qualitative agreement with figure 1 of Zhang (1992 : the 
third row of table 1). As a whole, table 1 shows that the dependence of the critical 
parameters on Prandtl number is qualitatively in agreement with Zhang’s (1992) 
recent numerical results, apart from the weaker dependence of azimuthal 
wavenumber m on P than Zhang’s results, and a relatively large discrepancy in the 
critical frequencies for P = 1 , l O .  

The structure of the marginal mode is inferred from figure 5 in our results. It is seen 
that the tilting of the vortex columns (figure 5a) increases with decreasing Prandtl 
number, while the localization of the columns (figure 5 b )  weakens as the Prandtl 
number decreases. The distance ,st of the centre of the convection columns from the 
axis of rotation (figure 5c)  has a minimum around P - 1, and increases dramatically 
for the smaller Prandtl number, while it shows a weak increase for a larger Prandtl 
number. All these characteristics are in good agreement with Zhang (1992: 
particularly summarized by figure 3). 

Both Zhang and Hirsching’s numerical results show a strong spiralling of columns 
(a dramatic increase of the tilting in the outward direction) for smaller Prandtl 
numbers. In  order to compare this type of structures more closely, we have plotted 
both the numerical and the present asymptotic results in term of the dependence of 
the amplitude A(8) and the phase shift v0(s) on the radial distance 8 on the equatorial 
plane, defined by 

%v, z = 0) = 4 s )  exp [i~(Q)-Q)o(s))], 

while for the numerical results the poloidal potential has been taken for V ( s , q ,  z). The 
results are depicted in figure 6 :  figure (a, b )  compares the results for c = 3.41 x 
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FIQURE 6. A comparison of the radial structure of marginal convection with the numerical results: 
(a ,b)  E = 3.41 x P = 0.1, h = 12 (corresponding to T = 1O'O); ( c , d )  E = 2.31 x lo-*, P = 0.03, 
vii = 22 (corresponding to T = 1Ol2) .  (a , c )  The amplitude A ( s ) ;  (b ,d)  the phase shift po(e). The 
results from the asymptotic theory are represented by solid curves, the numerical results by dashed 
curves. 
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FIGURE 7. The change of the radial structure of the marginal mode with the Prandtl number P :  
(a) amplitude A(e) ,  (6) phase shift (spiralling ) rpo(8) with E = 0.1 for the cases P = 0.1 (dashed line), 
P = 1 (solid line), P = 10 (dotted line). 

P = 0.1, T.% = 12 (corresponding to the Taylor number T = 1O1O in Zhang’s (1992) 
definition) ; figure 6 (c, d )  compares the results for E = 2.31 x P = 0.03, T.% = 22 
(corresponding to T = 10l2). Figure 6(a,c)  shows the amplitudeA(s), while figure 6(b ,  
d )  shows the phase shift vo(s). The solid lines are asymptotic results computed from 
the complex radial wavenumbers k(s )  as shown in figure 4 (a,  b ) ,  while the dashed 
curves are Hirsching’s numerical results. The agreement is particularly good for 
P = 0.1, while a relatively large disagreement of the phase shift is noticeable for 
P = 0.03. The asymptotics of the anti-Stokes line to s = 1 predict a less accurate 
result for a smaller Prandtl number P < 0.1. 

The structure of the modes expected from our asymptotic theory is summarized in 
figure 7 for the cases P = 0.1, 1,  10 with E = 0.1. The steepening of Taylor columns 
weakens dramatically for the smaller Prandtl number P = 0.1 (figure 7 a ) ,  while the 
spiralling increases dramatically as the Prandtl number decreases from P = 10 to 0.1 
(figure 7 b ) .  The results agree well with the recent numerical results by both Zhang 
and Hirsching. The present asymptotic theory shows that the columnar mode that 
appears with a large Prandtl number continuously modulates into a strongly 
spiralling mode a t  a smaller Prandtl number. On the other hand, even though the 
isolation of Taylor columns seems numerically extremely weak for spiralling modes 
of smaller Prandtl numbers, the present result predicts that it is, nevertheless, 
confined to a boundary layer of O((E/P)i)  asymptotically. A much higher Taylor 
number is required to confirm this prediction numerically. Also note that since the 
boundary layer widens for smaller Prandtl numbers with a fixed Ekman number, 
such a numerical setting leads to the illusion that the asymptotic theory has been 
nullified. 

8. Discussion 
Three convection modes have been identified by numerical studies of rapidly 

rotating self-gravitating systems (Zhang & Busse 1987 ; Zhang 1992 ; Hirsching, 
private communication) : the columnar, the spiralling, and the wall-attached modes. 
The analysis of the previous section reveals that the columnar and the spiralling 
modes constitute the same branch in phase space, with a continuous modulation 
from one to the other as the Prandtl number decreases. On the other hand, the 
preliminary analysis in Appendix C suggests that the wall-attached mode can be 
identified as an inertial Airy-function-type mode. 

The easiest starting point to understand the mechanism that leads to different 
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dynamical regimes (columnar, spiralling, wall-attached) is to examine the wave 
dispersion of the system, which can be written 

from (3.2), by implicitly assuming the possibility of a complex wavenumber a. It is 
seen that in the limit P+O the dispersion relationship (8.1) tends to a simple Rossby 
wave dispersion relationship given by (4.1 b)  as long as R - O(1) is assumed. In this 
limit, the diffusivity plays no part in the dispersion relation. Consequently, only the 
oscillatory mode is possible in this limit with this scaling. The regime corresponds to 
the inertial (wall-attached) mode considered in Appendix C. 

On the other hand, with a finite effect of Prandtl number P, which measures the 
magnitude of kinematic diffusivity, it is seen from (8.1) that a complex wavenumber 
01 is allowable, which enables a strongly isolated columnar mode to appear at a higher 
Prandtl number (see figures 5 b ,  7a). I n  order t o  realize a columnar mode even in the 
limit P+O, by retaining the second term of the dispersion relation (8.1), which allows 
a complex wavenumber a, we have to invoke a strong buoyancy force of R - (l/P). 
As a result, the thermal diffusivity effectively acts to isolate the columns in the 
vorticity equation (3.2). In  mathematical terms, this is equivalent to requiring a 
large shift of the turning point so from the real axis, which causes a strong spiralling 
in physical space (figures 5a, 7b) .  In  physical terms, while the isolation of convection 
requires a strong buoyancy force in order to invoke an effective thermal diffusivity, 
there is no effective kinematic diffusivity to counterbalance the buoyancy force, as 
in the case of P > O(1). Consequently, a fluid particle accelerated by the buoyancy 
force overshoots away from the kinematic diffusive boundary layer. Since the fluid 
particle senses a local phase velocity, which increases in magnitude with distance s, 
the fluid particle ends up with a strongly elongated closed streamer, represented by 
a spiralling pattern. Note that such a deformation is also preferable in respect of 
transportation of heat for a longer distance by a single fluid particle. 

On the other hand, in the limit of a very large Prandtl number, P +a, the balance 
is essentially achieved within the second term of (8.1) : the buoyancy force (the second 
part) is effectively balanced by the kinematic diffusivity (the first part). 
Consequently, in this case, without any overshooting, the fluid is confined to a 
kinematic diffusive boundary layer. As a result, the convection columns are steep 
and do not experience much deformation in the radial direction. 

Remember that the radial scale is order of 8, which is measured in terms of both 
the kinematic diffusivity u and the thermal diffusivity K as 

This scaling also supports the above argument that convection is characterized by a 
thermally diffusive boundary layer with P + 0 and a kinematically diffusive 
boundary layer as P+m. 

The dimensional critical temperature gradient $ (defined by (2.1 b ) ) ,  which initiates 
thermal convection, also suggests how the underlying physics might be understood 
(e.g. Soward 1977). It is directly inferred from the scaling of the Rayleigh number 
( 2 . 7 ~ ) .  In the limit of a large Prandtl number, the critical temperature gradient is 
scaled as 

$ - Ku-f 
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in terms of kinematic and thermal diffusivities. It is observed that a larger kinematic 
diffusivity helps to initiate convection, which is realized as a kinematic boundary 
layer. On the other hand, thermal diffusivity acts as a hindering factor to initiate 
marginal convection in this limit. 

However, when we inspect the limit of small Prandtl number for the columnar- 
spiralling mode, we obtain the scaling 

p w K: 

from the ordering PR - 1. In this limit, the kinematic diffusivity plays no role in 
initiating convection, while thermal diffusivity acts as a suppressing factor. This is 
a very ironical situation, because as the columnar mode modulates into the spiralling 
mode, the convection layer modules from a kinematic one to thermal one. Obviously, 
the thermal diffusion plays a crucial role in isolating the convection columns in this 
limit. However, in order to corporate the effect of thermal diffusivity into the 
dynamics, a sufficiently large temperature gradient must be invoked for the purpose. 

In  contrast, the critical temperature gradient for the inertial Airy-function-type 
mode (wall-attached mode) is measured by 

from the scaling ER - 1 (Appendix C).  The role of kinematic and thermal diffusivities 
is reversed from that of the columnar mode in the limit of P-tm. Since the inertial 
mode is characterized by an almost inviscid neutral oscillatory motion, the existence 
of kinematic viscosity acts as a hindering factor, while in contrast to  the spiralling 
mode, a large thermal diffusivity helps to  initiate marginal convection. 

p - VK-$ 

9. Concluding remarks 
A revised asymptotic theory of thermal convection in rapidly rotating systems has 

been constructed for cases applicable both to geophysical self-gravitating systems 
and their laboratory analogues, where the centrifugal force mimics self-gravitation. 
A conventional WKBJ approach (Busse 1970) assuming local real wavenumbers is 
not applicable to this system, because the spatial wave dispersion of the solution 
leads to an exponential blow up of the modulation at a higher order (Soward 1977). 
The difficulty is avoided by seeking a virtual centre of convection on a complex 
plane, where the wave dispersion locally disappears. The point is identified as a 
saddle point of the critical Rayleigh number on the complex plane. 

The result leads to a larger critical Rayleigh number than that of the previous 
conventional approach (Busse 1970). Nevertheless, the correction is just a factor of 
up to  1.3 for large Prandtl numbers (P  > l),  and a qualitative feature of convection 
obtained in the present study basically confirms the view inferred in the previous 
studies (namely Roberts 1968; Busse 1970). 

On the other hand, the critical Rayleigh number increases proportional to  the 
inverse of Prandtl number as P-tO relative to the previous value. This large 
discrepancy with the previous asymptotic theory is, in mathematical terms, caused 
by the need to shift the virtual centre of convection for a larger distance from the real 
axis in the limit of small Prandtl numbers. In  physical terms, the internal boundary 
layer sustaining the convective Taylor columns transforms into a thermally diffusive 
boundary layer from a kinematic diffusive boundary layer with decreasing Prandtl 
number. Consequently, in order to  overcome a large thermal diffusivity within the 
boundary layer, a larger temperature gradient must be imposed than estimated from 
previous asymptotic theory. 

5 FLM 243 
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A qualitative feature of convection obtained in the present study basically 
confirms the view inferred in the previous studies (namely Roberts 1968; Busse 
1970). However, a main quantitative difference in the present results is the radial 
scale. It has been estimated as O(Ei) (Roberts 1968), which is much longer than that 
of the azimuthal direction. The present revised asymptotic theory shows that the 
actual radial scale is as small as the azimuthal scale (i.e. O(E5)). The deformation (or 
spiralling) of convection columns has been inferred as a higher-order perturbation in 
the previous studies (e.g. Busse 1983; Busse & Hood 1982). The present asymptotic 
analysis reveals that the scale of deformation of convection columns is of the same 
order as that of the convection columns themselves. Both of the them have been 
described in terms of the complex radial wavenumber. I n  particular, a continuous 
modification from the columnar modes to  the spiralling modes is vividly 
demonstrated in terms of the phase shifting of the convection columns in the radial 
direction (figure 7 b ) ,  which is one of the main improvements obtained by the present 
revised asymptotic theory. 

It is also found that in the limit of small Prandtl number a competitive mode 
helped by a large thermal diffusivity appears. This mode, described as an almost 
neutral inertial oscillation, is expected to correspond to the wall-attached mode 
identified in the numerical study of Zhang & Busse (1987). A preliminary analysis for 
this mode is performed in Appendix C. An approximate transition diagram from the 
columnar-spiralling mode to the inertial mode is drawn. A more careful analysis for 
this mode is still to be done. 

The present analysis has been restricted to the limit of weak inclination of the 
outer boundaries relative to the equatorial plane. The analysis has been remarkably 
simplified by this approximation, because the dependence of the solutions on the 
direction of the axis of rotation no longer needs to be considered explicitly. It should 
be emphasized that the previous analysis by Busse (1970) demonstrates the 
usefulness of this limit. He has shown that, in terms of the previous asymptotic 
theory, the results with this approximation agree well with a full spherical analysis, 
which solves the z-dependence of the problem explicitly. I n  Appendix A, it is shown 
that the agreement further improves by considering a first-order correction to  a 
weak-inclination analysis. This approximation is expected to be still valid, even in 
terms of the present revised analysis, as long as a deviation of the critical distance 
so from the real axis and, subsequently, a correction of Rayleigh number are 
small enough. Since both corrections are small for a large Prandtl number, the result 
obtained for this limit is of good accuracy in this parameter range. On the other 
hand, because of a large shifting of the distance so to a complex plane and a diverging 
correction to  the Rayleigh number, the solution is qualitatively different from 
Busse’s ( 1970) analysis for smaller Prandtl numbers. Nevertheless, the analysis of 
Appendix A implies that  the analysis can be considered as a leading-order result in 
terms of a formal weak-inclination expansion approach. Higher-order corrections 
due to  a finite boundary inclination can be computed by proceeding to  a higher order 
of expansion of cr. I n  this respect, even for smaller Prandtl numbers, the approximate 
results are expected to be a qualitatively good representation. As remarked a t  the 
end of $3,  the extension of the present analysis to the full spherical problem is, in 
principle, quite straightforward. However, the actual procedure is extremely 
involved, because we have to  solve the z-dependence of the problem a t  each point on 
a complex plane, as we survey the saddle point. Note that, since the boundary 
condition (2.10) can be satisfied only locally in the full spherical problem, we have to 
supply a solvability condition corresponding to  (3.7) at the turning point st, which 
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should in turn be identified as a consequence of a complex plane analysis. An analysis 
in terms of a a-expansion may offer a short-cut to solving the problem. 

The qualitative nature of the present analysis should be emphasized. A physical 
structure of convection in a high rotation limit is elucidated by surveying a wide 
range of parameters. By adopting a general formulation of the problem, it is also 
shown that the structure of the problem is inherent in every rotating system of this 
type which contains a non-vanishing curvature on its outer boundaries. For this 
reason, the laboratory analogues proposed by Busse (1970) can be used to 
demonstrate this peculiar behaviour of instabilities by experiments. Even though all 
the numerical results have been presented in terms of the spherical geometry, the 
algebraic formulation presented is readily applied to any geometrical boundaries fit 
to the settings of the laboratory rotating systems. 

The beginning of the present work can be traced to a conversation with Andrew 
Soward during the summer Study Programme of Geophysical Fluid Dynamics a t  
Woods Hole, MA in July 1987. The actual start of the work has been enabled by Fritz 
H. Busse, who invited me to Bayreuth under the Alexander von Humboldt Research 
Fellowship for June 1990-October 1991. I express my sincere thanks for his 
continuous encouragements and a few, but very decisive, suggestions. In  particular, 
he pushed me to concentrate on the limit of weak inclinations of the outer 
boundaries. I also thank the Alexander von Humboldt Foundation, for providing me 
a German course under the fellowship, which enabled German discussions with 
Wolfram Hirsching, who also has kindly given me his unpublished numerical results. 
An intensive discussion with Andrew Soward and Chris Jones in May 1991 was 
helpful to complete the work. Sergio Corder0 read the manuscript very carefully for 
me during completion of the final draft. 

Appendix A. A higher-order correction for the effects of the inclination of 
the outer boundary 

The order-a corrections for the leading-order results in the main text based on 
( 3 . 1 ~ )  and (3.2) are considered in this Appendix. The higher-order terms in E in (2.9) 
will still be neglected. All the quantities are expanded in terms of a: 

v = %+a&+... , w= w,+aW,+ ... , 0 = @,+a@,+ ... , 
and 

where R, and oo refer to the critical parameters defined in $4 or $6. 
The z-component W ,  of the velocity a t  leading order is defined by 

R = R,+aR,+ ... , w = w , + ~ ~ w , +  ... , 

w, = q * & z  (A 1) 
from the consistency of (3 .1~)  and (3.2). 

The O(a) problem is defined by 

(w,  + im3PA*) A*& + (1 + P )  (awl/&) - imPR, 0, + w1 A*V,- imPR, 0, = 0, (A 2a)  
(1 + P) (a/&) A*V, + imPR, AzA*Q, = 0, 

(w,+im3A*) 0, +imV, + w ,  0, + imhz W, = 0 
(A2b) 
(A2c) 

from (2.9). Equation(A2b) defines V, as 

imPR, 
2(1+P) 

v, = ~ ( O ) - - h z * @ , .  

5-2  
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Equations ( A  1) and (A 3) imply that V and W are even and odd functions of z, 
respectively. By integrating ( A 2 a )  and (A2b)  in the z-direction from -qb to qb, 
respectively, we obtain, by taking into account the boundary condition (2.10), 

[(w,+im3PA*)A*+(1 f P ) q * ]  ~-imPR,~,+w,A*~-imP(~hq*q~R,+R,)8, = 0, 
( A  4 4  

(A 4b) (0, + im3A*) 8, + imq + 0, 0, +$imh q*q$ V, = 0, 

where the bar denotes the average in the z-direction. The corrections R,, w,, to the 
parameters are defined by a solvability condition, which is given by multiplying V, 
and 8, by (A4u) and (A4b), respectively, and taking their sum, integrated in the s- 
direction from 0 to 1:  

where ( a )  denotes integration in the s-direction. I n  performing the partial 
integrations, it has been assumed that V, and 8, tend to vanish toward s = 0, 1. Note 
that the spherical geometry satisfying ( 2 . 6 b )  and (4.5) gives 

-q*q; = 1. 
Consequently, we obtain 

w 1 = 0 ,  R,=:AR, 

for the spherical geometry. Recall that  h measures the magnitude of the gravitational 
force in the direction parallel to the axis of rotation. 

Appendix B. The role of wave dispersion 
The spatial dispersion of the wave is given by 

from ( 6 . 3 ~ ) .  On the other hand, the Cauchy-Rieman relation implies 

From (6 .3b ) ,  (B l), and (B 2 )  we conclude that when aR/as, $. 0 the wave is dispersive 
spatially, and vice versa. 

Appendix C. The limit of small Prandtl number 
I n  this Appendix, we offer a preliminary analysis for the Airy-function-type mode 

that appears in the limit of small Prandtl number. For simplicity, we assume the 
inequality 

and neglect the higher-order terms in both u and E throughout the analysis. The 
Laplacian is approximated by 

1 p P P u a , € 2  

A* x - (i/s2) + (E2/m2) (a2/asZ), 
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by implicitly assuming a/& - E-'. All the quantities are expanded in Prandtl number 
P ,  e.g. 

V =  V(o)+PV(l)+... ,  W=W'O'+PW'~)+ ..., R=R(o'+PR(l )+  .... 
At leading-order in Prandtl number, (3.2) reduces to an equation for the inertial 
oscillation 

(C 1) [(i32/3s2) + (m2/ s2 ) f ( s ) ]Vo)  = 0, 

where f(s) = (?/J*(s)/dO))- (1/s2). 

The square f(s) of the local radial wavenumber contains a single first-order turning 
point, say, so, such thatf(s) is negative at s < so and positive at s > so. Consequently, 
the inertial wave is evanescent inside turning distance s = so and is of standing wave 
character outside the cylinders = so. The leading-order expression for the asymptotic 
expansion in the limit E + O  (see e.g. Olver 1974, Ch. 11) is given by 

(C 2) V0)  = (g/f(s))iAi( - (m/e)'Y) 

in terms of the Airy function Ai(z). Here the radial distance s has been transformed 
into 5 by 

5 =  1 -; [ r[ -f(s')]ids']:, s < so. 

The leading-order temperature @(O) is then defined by (3 .1~) .  Note that for a spherical 
problem with (4.5) the turning point so is related to the frequency do) by 

(JO) = - 2 s 0 / ( 1 - 4 ) .  

As a boundary condition, we assume 

P O )  = 0 

at s = 1,  which is equivalently stated by 

Q = - (rn/s)ig(s = I),  (C 3) 

where f is thej th  zero (in ascendent order) of the Airy function. It follows that the 
solution contains j nodes in the radial direction, when g, is taken as an eigenvalue of 
the solution. From the characteristic structure of the Airy function, i t  is inferred that 
the solution is reminiscent of the wall-attached mode, numerically detected by Zhang 
& Busse (1987). Also note that the asymptotic parameter E is explicitly related to the 
zero t5 of the Airy function by (C3). Consequently, we require the explicit value of 
the parameter E to obtain the final results. 

A t  the first order of Prandtl number, we obtain 

(o(O)A* + q*)  V(1) + [ ( ~ ( l )  + imaA*)A* + 7*] V(0) - i&(O)@(O) = 0 (C 4) 
from (3.2). A solvability condition for (C4) is obtained by multiplying Po' by (C4) 
and by integrating it in the s-direction from 0 to 1. After some manipulations, the 
eigenvalues are defined by 
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FIGURE 8. (a) The critical Rayleigh number R (6 )  the eigenmode j, and (c) for the turning point 
so, of the inertial mode as a function of the parameter 6. 

where ( * ) denotes integration in the s-direction. 
The critical Rayleigh number R(O) is calculated numerically by using (C 5a).  The 

minimum is sought in terms of the order j of the zero 5. The dependence of the 
critical Rayleigh number R(O) and the eigenmode j on the parameter E are depicted 
in figures 8 (a) and 8 (b) respectively. The corresponding turning point so is shown in 
figure 8(c). 

Both the critical Rayleigh number R'O) and the number of nodesj increase with the 
inverse of E as E decreases. Since the radial scale decreases proportionally as E 

decreases, the tuning point so is always adjusted to  about midway from the axis of 
rotation by increasing the mode j. It is shown that the frequency w asymptotes to 
-0.25, identical to the standard value (4.6b), while the critical azimuthal 
wavenumber asymptotes to 0.0225 as E + 0, a value smaller than that of the standard 
value given by ( 4 . 6 ~ ) .  The scaling of ( 2 . 7 ~ )  implies that the Rayleigh number 
increases as - CT; - 6-0 % e-l, by taking the effective inclination of the boundary as 
CT - E-;, because the position of the strongest columns attached to the equatorial 
boundary is measured by 1 -s - E;. The result is consistent with this scaling. 

The transition point from the spiralling modes to  the wall-attached mode may be 
estimated in the following way. It has been observed that the critical Rayleigh 
number of the spiralling mode tends to 

R = l.S6133/P (C 6) 
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FIGURE 9. The transition diagram from the spiralling mode (upper left) to the wall-attached 
mode (lower light). 

as P+O. Consequently, the critical Prandtl number P,, where the transition occurs 
a t  a given parameter e (measures the Ekman number), is obtained by equating the 
two expressions (C5a)  and (C6) for the Rayleigh number, namely, 

P,(s) = 1.261 33/R(O)(e). 

The result is depicted in figure 9 .  Since the critical Rayleigh number of the wall- 
attached mode increases inversely to e, it is seen that the transition Prandtl number 
P, also decreases proportionally as e decreases. The result qualitatively agrees with 
the phase diagram inferred by Zhang & Busse (1987) numerically. 

Appendix D. Mathematical notes 

equivalent to ( 6 . l b )  on the complex plane of so. These are established as follows. 
The condition SRISs, = 0 is equivalent to ( 4 . 2 ~ )  along the real axis, and is 

D.1. Equivalence of 8R/6so = 0 to ( 4 . 2 ~ )  

By recalling the definition of SR/Gs, and the relation (B l), we have 

On the other hand, ( 4 . 2 ~ )  is equivalent to 

When the derivation of so is restricted along the real axis, the equivalence of (D 2)  to 
(D 1) is obtained by explicitly extracting the imaginary components in ( D 2 ) .  

D.2. Equivalent of SR/Sso = 0 to (6.1 b)  
When the analysis is extended to a complex so, the condition ( D l )  is stated 
equivalently by 

- 0  
22-22- aP aP. a 9 . a 9  - 0 ,  22-EL- aPa9 a9.aB 
as, au as, a. as, au as, a. 
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or by further employing thc Cauchy-Rieman relations, 

As long as (a=5?,,/aw)2+((a5?i/aw)2 + 0, the equivalence of ( D 3 a , b )  to ( 6 . l b )  is 
supported by (4 .3d ) .  

D.3. Identi$cation of a saddle point as a critical distance so 

In  seeking a complex radial distance so, where the maximum amplitude of convection 
is attained, a graphical approach has been made on figure 1 .  An implicit assumption 
of this graphical approach is the identification of the critical point as a saddle point 
defined by the relation 

(D 4) 
aw aoam awak aRam aR ak -+--+-- + - - + - - = O  
as am as a k a 5  am as akam ' 

Note that the condition (D4) is equivalent to the following set of conditions: 

as long as am/as + 0 and ak/as + 0. 
The equivalence of (D5a) to  (6 . lb )  has been established in the previous section. 

The equivalence of (D 5a ,  b )  to (4.2a, b ) ,  respectively, is readily proved in a similar 
manner. Consequently, the set of conditions (4.2a, b ) ,  ( 6 . l b )  is equivalent to 
identifying a saddle points with (D 4)  of Rayleigh number on the complex 8,-plane. 
Note that in the actual procedure, the condition ( D 5 c )  is satisfied from the outset 
by setting k = 0. Also note that the Rayleigh number minimum in respect to m has 
been plotted on every point of the complex plane in figure 1 ,  which satisfies (D5b). 

It is also possible to repeat a similar procedure for a fixed azimuthal wavenumber 
m. This actually corresponds to  the procedure used by Zhang (1992) to identify the 
marginal mode numerically. An equivalent statement to ( D 4 )  in this case is 

=-+--+ i3R 8Raw (" -+-- aRaw)ak - = o  
as aw as ak awak as ' 

Even in this case, the identical result is recovered finally by choosing rn such that 
(D5b) is satisfied a t  a saddle point. 
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